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Abstract 

We introduce new special ellipsoidal confocal coordinates in [w” (n 1 3) and apply them to the 
geodesic problem on a triaxial ellipsoid in [w’ as well as to the billiard problem in its focal ellipse. 

Using such appropriate coordinates we show that these different dynamical systems have the 
same common analytic first integral. This fact is not evident because there exists a geometrical 
spatial gap between the geodesic and billiard flows under consideration, and this separating gap 
just “veils” the resemblance of the two systems. 

In short, a geodesic on the ellipsoid and a billiard trajectory inside its focal ellipse are in a “veiled 
assonance”--under the same initial data they will be tangent to the same confocal hyperboloid. 
But this assonance is rather incomplete: the dynamical systems in question differ by their intrinsic 
action angle-variables, thereby the different dynamics arise on the same phase space (i.e. the same 
phase curves in the same phase space bear quite different rotation numbers). 

Some results of this work have been published before in Russian (Tabanov, 1993) and presented 
to the International Geometrical Colloquium (Moscow. May 10-14, 1993) and the International 
Symposium on Classical and Quantum Billiards (Ascona. Switzerland, July 25-30, 1994). 

Keywords: Real differential geometry; New special ellipsoidal confocal coordinates; Geodesic flow: 
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1. Introduction 

A dynamical problem of free motion of the point mass on the surface of the ellipsoid in 
the finite-dimensional Euclidean space is well known from 1839, when using the invented 
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ellipsoidal coordinates, C. Jacobi succeeded in separating the variables in the equation of 
geodesics (Jacobi, 1839, 184 1, 1866). 

On the other hand, Birkhoff first formulated in 1927, a billiard problem for the planar 
domain, bounded by the smooth strictly convex closed curve (Birkhoff, 1927a, b). The point 
follows a straight-line path with the unit velocity inside the domain and reflects from the 
boundary an according to the law “the angle of incidence is equal to angle of reflection”. 

To describe a corresponding billiard mapping Birkhoff suggested the use of the variables 
(s, u), where s = s(x)mod( Ian I) denotes an oriented arclength of an between some fixed 
point xc E aG? and a point x E an of reflection on the boundary; IanI is a length of 
852, and u = - cos 8, where 19 is the angle between a positively oriented tangent vector 
to i3Q at the point x and a given vector of velocity in this point, 0 I 8 I n. A mapping 
T : (so, uo) + (~1, u 1) is the diffeomorphism of a corresponding phase space S’ x [- 1, 11 
and preserves a measure dm = ds . du (Birkhoff, 1927a, b; Lazutkin, 1981; Sinay, 1977). 

For the special case when aR is an ellipse, the billiard mapping T admits an analytic 
first integral and Birkhoff described the qualitative behaviour of T in this case (see also 
Abdrahmanov ( 1990); Amiran ( 1988); Bolotin ( 1990); Keller and Rubinow ( 1960); Moser 
(1980); Ramani et al. (1986); Stepin (1981) Tabachnikov (1995); Veselov (1991)). 

We consider the problems of both Jacobi and Birkhoff from a common point of view. 
We use such elliptic coordinates on the plane which allow us to obtain explicit formulas 
for the billiard mapping in the ellipse and effectively investigate its properties. A natural 
generalization of these elliptic coordinates in the case of higher dimensions gives rise to 
new special ellipsoidal coordinates in [w”, n L 3, which make it possible by the way, to 
describe with convenient formulas a geodesic flow on the surface of the ellipsoid. 

2. Elliptic billiard 

Firstly, let us consider Birkhoff’s billiard inside an ellipse with equation 

0 < b2 < a2. (2.1) 

We shall use in [w2 the well-known elliptic coordinates (p, cp) : 

x = h . cash I_L . cm cp, y = h . sinh p sin (o, (2.2) 

where h2 = a2 - b2, 0 5 F -c 00, 0 5 cp -c 2rr. The two families of confocal ellipses 
p = const and hyperbolas q = const form an orthogonal net of the curves. The ellipse afi 
under consideration has the equation p = ,LQ, where cosh2 ~0 = a2/ h2, its eccentricity 

is QJ = coshh’ ~0 and an arclength ds = h 7 cash ~0 - cos q . dp. Let us identify the 
points of the ellipse aa, which are symmetric with respect to the origin (x, y) = (0,O) and 
so we put 0 5 q < n. We obtain explicit formulas for the billiard mapping T : ((PO, 00) H 
(cpl,&) in the ellipse /1 = ~0, using Birkhoff’s method (Birkhoff, 1927a): 
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cp~ = -cpo + 2 arctan tanh ~0 . 
( 

:~~hv~~~t~~~ot~~a~ g 
) 

(mod 7r 1. (2.3) 

HI = -&+arctan(z) -arctan(z)(modn). 

The mapping (2.3) is reversible under the involution R : (cp, 0) F+ (cp, n -0) = (cp. 4). 
i e . ., T-’ = R o T o R, R2 = Id. By virtue of mapping F : (cp, 0) H (-cp. -@)(modrr) 
commutes with T, i.e., p o T = T o b, an involution G = R o k : (cp. 0) H (n - cp, 0) = 

(-9. 0) reverses T too. We obtain T as a composition of two involutions: T = R o (R o T) 
or T = G o (G o T). 

The fixed points of the mapping T on the boundary 86’ correspond to the values H = 0.~. 
A point H = (cp, 0) = (0. in) is a hyperbolic fixed point of T and it is responsible for 
the trajectory of the billiard along the major axis of the ellipse p = ~(1. A fixed point 
E = (cp. 0) = (in, in) belongs to the elliptic type and it corresponds to the trajectory 
along the minor axis. The eigenvalues of the linear part of the mapping at the hyperbolic 
fixed point H has the form 

hl = 
cash PO + 1 

cash /zqLo - 1 
> 1, A_? = q’ (2.4) 

A billiard flow S, (Sinay, 1977) in the ellipse 8Q is an integrable one and we obtain its 
first integral f, in the form 

1, = cash’ F. cos2 6 + cos2 cp. sin2 0, (2.5) 

where 0 I P I ~0, 0 I cp < x and 19 is an angle between a given trajectory of the billiard 
flow and a tangent vector to the ellipse of the confocal family p = const at the intersection 
point with the trajectory, with the corresponding value of parameter t along the billiard 
trajectory. Since the first integral It of the flow does not depend on the parameter t. we 
obtain the first integral I of the billiard mapping T in the form (2.5) putting p = ~0, and 
one can verify that the mapping T also preserves a symplectic 2-form dq A d0 besides the 
measure dm due to the integrability. 

A value I = 0 corresponds to the elliptic fixed point E. If 0 < I < I. then the tra- 
jectories of the flow St cross the part of the major axis of aQ between its foci, and they 
(or their continuations) will be tangent to the same confocal hyperbolas cp = f&mod E), 
cos2 cpC = I, after each reflection from the boundary. A value I = 1 corresponds to the 
union of two branches of the stable Wl( H) and unstable W$( H) manifolds (“separatrices”) 
of the point H, 

We(H) = Wis’“(H) = (((0.0): T”(cp, Q) -+ H asn -+ +co]; (2.6) 

these manifolds coincide with one another and they are responsible for the trajectories 
through the foci of the ellipse. If 1 < I < cosh2 ~0, then the trajectories of the billiard flow 
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after each reflection from afi will be tangent to the same confocal ellipse ,LL = put, where 
cosh2 put = I. Finally, I = cosh2 ~0 corresponds to the fixed points of T on the boundary 
an (i.e. 0 = 0, n). 

Let us introduce by analogy with Birkhoff (see, Arnold (1978); Arnold et al. (1988); 
Birkhoff (1927a, b); Poincare (1892)) the action angle-variables (K, I) in terms of which 
the transformation To takes the form 

~1 = KO + a(Zo)(modn), II = IO, 

where cx is an analytic function. Here a(Z) is called rotation number of the invariant curve 
I = const (Birkhoff, 1927b). The relation between variables q and K has the form 

,=arcco,[,..sn(F(&)(l-iii))], underOsZ<l, 

and 

q=arccos[.rn(F($)(l-ZK))], under1<I<cosh2pu, 

where sn is one of the Jacobian elliptic functions (Whittaker and Watson, 1927) and 

n/2 

F(k) = 
SJ 

dt 

0 
1 - k2 sin2 t. 

We calculate the rotation numbers cz (I) on the invariant curves I = const of the mapping 
To and obtain under 0 5 I < 1: 

n 
a(Z) = ~. 

2F(z/l) 

where 

F(z, k) = 
dt 

1 - k2 sin2 t 

Note that 

a(0) = arcsin( 2c~~~“,b’o). 

If 1 < I < cosh2 ~0, then 

a(I)= IiT 
2F(ll4 

x F arcsin 

2 tanh ~0 . J cosh2 k. - I 

cosh2 ~0 - I + I tanh2 ~0 

47. 
2 tanh ~0 . J cosh2 I_L~ - I 

cosh2 ,LQ - I + I . tanh2 ~0 

(2.7) 

(2.8) 
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“The transformation of each invariant curve (I = const) of the analytic family which 
abuts on 0 = 0 is essentially a rotation of that curve into itself through an angle (Y which 
varies analytically with the curve... But this variable is not to be regarded as defined along 
the limiting non-analytic curve of course” (Birkhoff, 1927b). However, it is possible to 
consider the prolongation of the function a(Z) by continuity onto this limiting value I = I. 
We find that cr(1) = O(modn). Note, that if I = cash* ~0, then a(Z) = 0. 

If an invariant curve I is such that a(Z) is commensurable with n, then corresponding 
trajectories of the billiard flow S, are periodical; they all close up after the same number of 
reflections from the boundary and have the same length, and so one can prove once more 
the famous “Poncelet Porism” (Berger, 1990a; Cayley, 1858; Chang and Friedberg, 1988: 
Griffiths and Harris, 1978; Poncelet, 1866; Tabachnikov, 1995). 

It is possible to obtain explicit formulas for 

rc;(cpo, 00) = (%(cpO, eo), el(~O, eo)) 

under integer n L 1. We find for 0 5 I < 1: 

(P,, = arccos A. sn F arcsin [ ( ( 

where 

2 tanh ,UO . 

cash’ ~0 - Z + Z . tanh* ~0 

If 1 < Z < cash* ~0, then 

% = arccos[sn(F(in - cpe. l/1/7) -n . a*)], 

where 

(2.9) 

(2.10) 

( ( fi. 
2 tanh ~0 . J cash* ~~ - Z 

& = F arcsin 
cash* ~0 - Z + Z . tanh* ~0 ’ 

l/J7 

In a particular case, under Z = 1 we find 

(pn = f2 arctan(e ““*I . tan &n)(modrr) 

on the coinciding separatrices Wn(H) = lV~.“(ZZ), having equation 

(2.1 1) 

tan* 0 = 
sinh* ~0 

sin* cp 
(2.12) 

We obtain 0, (~0, @o), using formula (2.5) for the first integral Z of the mapping To. 
One can consider the parametric representations of the curves We’” in the form 

V 
U.S = q&((t) = f arctan[sinhh’ (t In hl)](mod ITT), 

0”.’ = f&(t) = &arctan[sinh ~0 . cosh(r lnhl)](modJr), 
(2.13) 
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then (q&((t), e+(t)) will be the separatrices solution of the system (2.3), satisfying the 
normalizing condition q+(O) = in(mod~r). 

Let us put in (2.3), f& = &t + k), 6$ = O(t + k), k = 0, 1 and note that the billiard 
mapping onto separatrices (2.13) is conjugated with a shift t H t + 1. Then we consider 
for such an obtained system of Eq. (2.3) a corresponding linear system of “equations in 
variations” along the solution (2.13). We may rewrite the latter system in the form of the 
second-order linear homogeneous difference equation depending on I coefficients: 

B(t - 1) . qO(t + 1) + B(r) . v(r - 1) 

+[B(t) - 2B(t - l)B(t)D(t) + B(t - l)] . (D(t) = 0, (2.14) 

where 

2 1 
B(t) = ~ . l- 

tanh ~0 sinh* ~0 .cosh(tlnhl) .cosh((t + 1)lnhl) 1 ’ 
D(t) = 

cash ~0 . sinh ~0 . cosh2(t In hl ) 

1 + sinh* ~0 . cosh*(t In Al) ’ 

The proof of the following lemma is straightforward. 

Lemma 1. General solution of Eq. (2.14) has the form 

v(t) = a(t)vol(t) + Nt)cp2(tL 

where a(t), b(t) are the arbitrary periodic functions with period 1, 

VI@) = l 
cosh(t lnhl)’ 

p*(t) = sinh(t lnhl) + 
t . sinh(ln Al) 

cosh(t lnhl) ’ 

(2.15) 

and the Kazorati determinant W (cpl , ~2) (t) of this basic solution is equal to 

2 
W(w, VJ*)(t) = 7 

smh ~0 
. B(t). 

Recall that the Kazorati determinant W(CJII, q*)(t) of two basic solutions is defined as 

W((OI 3 402)(t) = VI 0)&2(t) - (02Q)Aw (t), 

where A&) = cp(t + 1) - (p(t). 
It is very interesting to underline the remarkable correspondence between (2.15) and the 

well-known basic solutions 

1 
u1(t) = - 

cash(t) ’ 

I 
u*(t) = sinh(t) + - 

cash(t) 

of the linear homogeneous second-order differential equation in variations 

d* 2 
Ga(t) + ------1 .u(t)=O 

cash*(t) 1 
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for the non-linear pendulum equation 

d2 
dt2~(f) + sin x(t) = 0 

along its separatrices’ solution x(t) = 2 arctan(sinh(t)). 

3. New ellipsoidal confocal coordinates in R” 

Let us turn to the geodesic problem on a general triaxial ellipsoid E in R3, having the 
equation 

X2 2 22 
--$+$+cz=l. 0 < c2 < b2 < a2 (3.1) 

and introduce in R3 the special ellipsoidal confocal coordinates (@, w, cp) by analogy with 
(2.2): 

h 
x=~.cosh@.cosh~~coscp, 

cash ,LLO 

h 
Jl=-. 

sinh ~0 
sinh + . sinh k . sin cp, 

(3.2) 
h 

i= f 
cash ~0 . sinh ~0 

x (cosh2 q - cosh2 yo)(cosh2 y. - cosh2 w)(cosh2 I_LO - cos2 (D), 

whereh2 = a2-b2, 0 I cp < 2n, 0 5 CL 5 ~0, ~0 5 + < co, cosh2 ~0 = (a2-c2)/h2. 

The ellipsoid E gives rise to three coorthogonal families of the second-order confocal 
surfaces: @ = const is a family of confocal ellipsoids, w = const corresponds to the 
hyperboloids of one sheet and 40 = const is a family of the hyperboloids of two sheets. One 
can obtain in the two intermediate cases either a focal ellipse & in the plane z = 0 with the 
equations + = ~0, p = FCJ or a focal hyperbola f in the plane y = 0 with the equations 
/J = 0, cp = 0, rr. The ellipsoid E has the equation + = y?n, where cosh2 r+ku = a2/ h2; its 
major ellipse L with semi-axes a, b belongs to the section z = 0 and satisfies the equations 
+ = &I, CL = ~0. A middle ellipse M with semi-axes a, c belongs to the plane y = 0 and 
has either equations $I = $0, p = 0 or 1+9 = @u, cp = O(modn) depending on the place 
of the points of M with respect to the branches of the focal hyperbola r. A minor ellipse 
S with semi-axes b, c has the equations $ = +u, ~0 = $X and belongs to the plane x = 0. 

One can easily find a Gaussian curvature K of the ellipsoid E: 

cosh2 +u . sinh* $0 (cosh2 $0 - cosh2 ~0) ,^ ^~ = 
h2 ‘~. (cosh2 $0 - cosh2 F)2(cosh2 +. - co9 (p)2’ 

(5.5) 
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Fig. 1. The geodesic on the surface of the ellipsoid E which escapes from the point A = 
($ = $0, p = ~0, cp = ~0) under the angle 0 = 190 to L, and the trajectory of the billiard inside the 
focal ellipse c?, escaping from the point Al = ($ = ~0, w = ~0. ~0 = cpo) under the same angle 8 = 00 
to &, are tangent to the same common hyperboloid y = CL, (the tangent points are ?g and rb, respectively) 
(Theorem 1). 

and the umbilical points of E correspond to the intersection points of E with the focal 

hyperbola f. The lines of intersection E with the hyperboloids I_L = const or q = const 
are the curvature lines of the ellipsoid. 

We separate the variables in the Hamilton-Jacobi equation and obtain a differential equa- 
tion for the geodesic lines on the surface of ellipsoid E in the form 

(cash* $0 - cash* p) 

(cash* ~0 - cash* p)(cosh* w - I) 
dl.L 

(3.4) 

where 0 5 I 5 cash* ~0 is an arbitrary constant. Eq. (3.4) may be integrated in terms of the 
well-known two variables Theta function (Braunmiihl, 1882; Moser, 1980; Staude, 1883; 
Veselov, 1991; Weierstrass, 1861), but one can find the results of the qualitative analysis of 
geodesics in Salmon 1882) (see also, Arnold (1978); Arnold et al. (1988); Cayley (1871- 
1873); Chasles (1846); Chenciner (1992); Darboux (1894); Douady (1982); Hilbert and 
Cohn-Vossen (1932); Klein (1926); Klingenberg (1982); Knorrer (1980, 1982); Roberts 
(1846)). 

It turns out that one can consider any geodesic on the surface of E as escaping from some 
point (D = ~0 of the oriented major ellipse L under a corresponding angle 00 E [0,2x) 
with L and this geodesic line will cross L in the next (Fig. 1) (see also, Arnold (1978); 
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Birkhoff (1927b); Chang and Shi (1989); Jacobi (1835); Veselov (1994)). Let (cpt ,@I) be 
the coordinates of the following intersection of this geodesic with L. Taking into account 
the symmetry of ellipsoid E with respect to the plane z = 0, we shall consider only its 
upper part z > 0, producing the reflection of geodesics from Z_. according to the law: 
“the angle of incidence is equal to the angle of reflection”. Then we glue (i.e. identify) 
the points of L, which are symmetric with respect to the centre of L. We thus obtain the 
mapping TR : (cpo, 00) H (cpt, et), 0 ( cp < rr, 0 I 8 i rr, which acts on a Poincare 
section (L/ -) x [0, rr] of geodesic flow g, on E (see, for instance, Klingenberg (1982); 
Sinay (1977)); here we denote by - the proclaimed glueing, and now the mapping Th is in 
assonance with the above considered billiard mapping T in the ellipse. 

A geodesic flow g, on the ellipsoid E is an integrable one and its first integral It has the 
same form as (2.5): 

I, = cosh2 p . cos2 0 + cos* cp . sin* 0, (3.5) 

p, cp were defined in (3.2), and 0 is the intersection angle of a geodesic in question with 
curvature line p = const under the corresponding value of parameter t along this geodesic 
(see also, Cayley (187 1-1873); Joachimsthal (1843); Liouville (1844, 1846); Whittaker 
(1917)). Since the first integral Z, of the flow does not depend on parameter t, we obtain a 
first integral of the mapping Tg in the form (3.5) under ZL = ~0. 

A value I = 0 corresponds to the elliptic fixed point of Tg or to the stable closed 
geodesics S of the ellipsoid E. If 0 < Z < 1, then geodesics cross the part of the ellipse 
M with the equations @ = $0, /_L = 0 and they are tangent to the curvature lines cp = 
fq, (modir), where cos2 qa, = I. A value Z = 1 corresponds to the geodesics going 
through the umbilical points of the ellipsoid (i.e. separatrices of the hyperbolic fixed point 
H = (cp, 0) = (0, 4~) of the mapping T,), and a point H corresponds to the unstable 
closed geodesics M. If 1 < Z < cosh2 ~0, then the geodesics after each reflection from 
L will be tangent to the curvature lines I_L = Z.L~, where cosh2 ~~ = I. Finally, we obtain 
a stable closed geodesics L under I = cash* ~0 and the mapping Tg gives us here the 
transformation of the conjugate points on L. 

Thus, there exists an assonance between the geodesics on the surface of the ellipsoid E 
and billiard trajectories inside its focal ellipse E. 

Theorem 2. A trajectory of the billiard$ow inside the focal ellipse & which escapes from 
a point cp = cpo with an angle 8 = 00 and a geodesic line on the sur$ace of ellipsoid E with 
the same initial data (i.e. escaping from a point cp = cpo of the major ellipse L under the 
same angle 6 = 00 to L) are tangent either to the same common hyperboloid (,LL = const 
or cp = const) or both intersect the focal hyperbola r. 

This fact is non-obvious because there exists the spatial gap between the geodesic and 
billiard flows in question and a projective map rr : ($0, CL, cp) H (~0, p, cp) of E onto its 
focal ellipse & does not conserve the angles between the curves. But Theorem 2 immediately 
follows from the independence of the geodesic integral (3.5) of the parameter +, which is 
a “number” of an ellipsoid from the family $ = const of the confocal ellipsoids. 
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As an example we present now the mapping T, in the case I = 1 (see also, Braunmtihl 
(1882); Cayley (1872); Levallois ( 1993); Veselov ( 199 1)). 

Lemma 3. If I = 1, then the mapping Tg, which corresponds to the geodesicsJIow on the 
ellipsoid @ = $0, gives&e to the dynamics 4po H yq on the separatrices by the formula 

f(lol) = A: . f(cPo); (3.6) 

hi =exp 
(n ‘go -i. A. F(V)) , 1 F(k) 1 

is the eigenvalue of the linear part of TR in the hyperbolicjixedpoint H, 

010 . ((g(v) - go)PF(k)), 5) 
f (‘) = 016 . ((s(v) + go)PF(k)), r) 

(3.7) 

(3.8) 

We denote 

k, = cosh(ko) k2 = 1 - k’*, . F(k’) 
cosh(+oo> ’ t=lFo’ 

go=F(arcsin(&).k’). gCv)=F(arcsin(~).k’). 
A = @/Wn@3k r)Iz=i,go/(2F(k))* 

formulasfor F(z, k), F(k) and F(k’) were introduced in (2.7), 01 (z, t) and @3(z, 5) are 
the Theta functions: 

01 (z, 5) = 2. enis/ . F(-l)k . errikck+‘jr . sin((2k + l)rrz), 
k=O 

03(2, t) = 1 + 2. FeTikzr . cos(2lrkz) 
k=I 

(Gradshteyn and Ryzhik, 1965; Whittaker and Watson, 1927). 

Note that f ((p + JT) = f -’ (~0) and A above is the pure imaginary complex quantity: 

A = 2rri. E(-1)” . 
sinh(nngo/F(k)) 

?I=1 smh(rnF(k’)/F(k))’ 

the sum converges under the condition 0 5 go < F(k’). In the partial case when the 
minor semi-axes c of the ellipsoid tends to zero (c --f 0) (i.e., $ = $0 = ~0, F(k) = 
ix, F(k’) = oo), the formulas (3.6)-(3.8) turn into (2.1 l), i.e. 

tan’ 1 
( > 2V’ = ky. tan’ iv0 , 

c > 
Al = 

cash ~0 + 1 
cash p. - 1 

z- 1, 

and the geodesic equation (3.4) turns into the equation of the straight line in the elliptic 
coordinates (2.2). 
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It is possible to calculate the rotation numbers for invariant curve I = const of the 
mapping TR (Klingenberg, 1982; Viesel, 1971): if the rotation number is commensurable 
with 7r, then such an invariant curve corresponds to the closed geodesics on E and there exists 
a version of the Poncelet theorem for the corresponding geodesics (Chang and Shi, 1989). 

Of course, there are no reasons for the coincidence of rotation numbers for a geodesic 
on the ellipsoid and for a billiard trajectory inside its focal ellipse, having the same tirst 
integral. One can easily see from (3.4) that for the orbital or trajectorial equivalence of 
the geodesic flows of the different ellipsoids, it is necessary to provide the similarity of 
these ellipsoids only (i.e. proportionality of their semi-axes a. b, c). It turns out that this 
condition is also a sufficient one (Bolsinov and Fomenko, 1994). 

4. Ellipsoidal confocal coordinates in R” , n > 3 

Let us introduce new special ellipsoidal coordinates in R”, it > 3 as being the general- 
ization of coordinates (2.2) and (3.2). We consider (n - 1)-dimensional ellipsoid En_) in 
R” with the equation 

n X2 
c+=1, 0 < a: < a; < . . < a;, (4.1) 
k=l ak 

and we relate the ellipsoidal coordinates I,&}; with the rectangular ones {Xk]; by the 
formulas 

2 
‘n-k+1 = h2 . 

fl;=,(cosh2 ,&n - cosh2 m-1.0) 

n&\&k- I (cosh2 pLm,u - cosh2 p&t,,,) ’ 
(4.2) 

where k = 1,2 . . . . . II h2 = a2 - a2 , ,,_,, @I = iv, 0 5 Cp < 2Jr3 Fk-1.0 5 Fk 5 bk.0 

fork = 2,3,. . . , (n - I), pn-li 5 pL, < co. We put in (3.2) by definition cosh2 po,o = 
0, pt,n = 0 and cosh2 Fk,u = (iz - ai_k)/h2 fork = 2,3,. . , (n - 1). 

The ellipsoid E,_t gives rise to n coorthogonal confocal quadrics: pk = const are 
the families of the confocal (n - 1)-dimensional hyperboloids (1 5 k 5 (n - l)), and 
/I,, = const is the family of the confocal (n - I)-dimensional ellipsoids. The ellipsoid E,_t 
has the equation F,, = ~~,o, where cosh2 ~~,u = u,‘/ h2. There exist (n - I)-intermediate 
cases: cp = O(modrr), ~2 = 0 and & = vk,O, pk+t = &o fork = 2, 3, . . . . (n - 1). 
which clearly define (n - 2)-dimensional focal manifolds. 

If we introduce for a point x = (xl, x2, . . . , x,) E R” the Jacobi elliptical coordinates 
(hk); as the solutions of the equation 

&%=l, 
k=l (‘k2 

(4.3) 

with hi < a: < A.2 < . . . < A,-1 -c a:_, < b, < a,‘, then the relation of coordinates 
(kk}; and {&]T takes the form 

hk = a,2 - h2 . cosh2 /&-_k+i, k= 1,2 ,..., n. 
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We also present a formula for the arclength ds in the ellipsoidal confocal coordinates 

(pk};: 

ds2 = &k . d& 
k=l 

gk = h2 . fi 
n 

( cosh2 @k - cosh2 CL,) n (cosh2 ,& - cosh2 /+I,O). 
m=l,m#k I m=3 

5. Conclusion 

We introduced in this paper a new special representation of ellipsoidal confocal coordi- 
nates in R” (n > 3) and applied them to the geodesic problem on the triaxial ellipsoid in 
R3 and to the billiard problem in its focal ellipse. We established the existence of the kind 
of assonance between these dynamical systems and presented some new explicit formulas 
for the systems in question. 

Using the well-known integrals of Uhlenbeck for the surface geodesic flow and for the 
billiard mapping inside the general n-axis ellipsoid in R” (n 2 3) (Devaney, 1978; Knorrer, 
1980, 1982; Moser, 1980; Veselov, 1991), taking into account (4.2), we make: 

Allegation 4. A geodesic line on the sur$ace of general n-axis ellipsoid F,, = p,,,o in R” 
(n > 3) and a trajectory of billiardflow inside its “focal” (n - 1)-dimensional ellipsoid 
with the equation k,, = pun-l,0 are tangent “under the same initial data” to the same 
confocal hyperboloids (quantity of these is equal (n - 2)) from the families pk = const 
(1 I k 5 n - 1). 

It is necessary to note that from the geometric point of view our special ellipsoidal 
coordinates (3.2) and (4.2) are equivalent to the Jacobi ellipsoidal confocal coordinates 
(4.3), but (3.2) and (4.2) are sometimes more convenient than (4.3) for calculations and 
investigations of problems of celestial mechanics and mathematical physics (see, Arnold 
et al. (1988); Bykov (1965); Dubrovin et al. (1988); Kniirrer (1980, 1982); Morse and 
Feshbach (1953); Moser (1980); Veselov (1991); Wainshtein (1965)). 

Hintingly, the coordinates (3.2) (+, p, cp) are linked via one-to-one correspondence with 
the Cartesian coordinates (x, y, z) in the whole upper (z > 0) (or down (z < 0)) half-space 
(excepting only some degenerated surfaces of the smaller dimensions), whereas the Jacobi 
ellipsoidal coordinates (At, h2, h3) are linked via one-to-one correspondence with (x, y, z) 
only within octant (say, under (X > 0, y > 0, z > 0)). 

Thus, for example, the coordinates (@, CL, cp) are better than (4.3) adapted to the 
investigation of the wave fields and eigenfunctions of Laplace operator inside the triax- 
ial ellipsoid. 

Note that Lemma 1 was used essentially in papers (Levallois and Tabanov, 1993; Tabanov, 
1992, 1994) proving the non-integrability of Birkhoff’s billiard in the symmetric strictly 
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convex planar domains bounded by the perturbed analytic curves closed to an ellipse and 
for the derivation of the asymptotic formula for the transversal splitting of separatrices of 
the hyperbolic fixed point of the corresponding billiard mapping. In fact, the result of these 
papers denotes the presence of positive topological entropy for the billiard in the mentioned 
domains (see, Donnay (1991) for the local Cco-smooth perturbations of the ellipse). The 
analogical problem on non-integrability of geodesic flows on the analytic strictly convex 
symmetric compact surfaces, closed to the triaxial ellipsoid in R3, is much more difficult 
one (see, Berger (1990b); Knieper and Weiss (1991); Levallois (1993); Poincare (1892)) 
and our special ellipsoidal coordinates (3.2) will be probably effective when resolving this 
problem and for the calculation of separatrices splitting the angle. 

Remark 5. Lazutkin used the KAM theory to show that for the billiard trajectories with the 
small angles to the boundary there exist in the phase space of strictly convex planar billiard 
a set of invariant curves of positive measure (Lazutkin, 1973). On the other hand, it is a 
very difficult problem to prove that the Lebesgue measure of the complement of the union 
of all KAM curves are positive and that the billiards in the strictly convex planar domains 
bounded by the “typical” analytic curves (or geodesic flows on the “typical” analytic strictly 
convex compact surfaces) have the positive metric entropy or positive Lyapunov exponents 
(Lazutkin, 1993). Today, it is one of the main unresolved problems of Hamiltonian dynamics 
with two degrees of freedom. 

In the rest of this paper we pointed out that besides the ellipsoidal coordinate system 
there are (Morse and Feshbach, 1953) just 10 other well-known coordinate systems in R”, 
which admit the separation of variables for the reduced wave equation and for the eiconal 
equation of the geometrical optics; it is not difficult to see that all these coordinate systems 
are the special or degenerate forms of (3.2) and they may be obtained from (3.2) via different 
limiting transformations. 
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